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About this Lecture

This lecture is all about adjusting for confounders

▶ Why we want to adjust for confounders
▶ How we can adjust for confounders using re-weighting
▶ Limits of re-weighting: the curse of dimensionality
▶ How we find suitable control units using matching
▶ Differences between regression and matching

Matching is a powerful tool, but it’s also an art in itself

▶ There are many techniques out there
▶ Learning to use them takes practice
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Resources

As an introduction, I recommend Chapter 5 in Scott Cunningham’s Mixtape

Slightly more detailed coverage can be found in

▶ Huntington-Klein’s The Effect, Chapter 14
▶ Huber’s Causal Analysis, Chapter 4

Many examples in this chapter, in particular the R codes, have been taken from The
Effect or inspired by it.
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Credits

Stephen Pettigrew produced some very instructive graphs on matching. You can find
his slides on matching here. He has lots of interesting materials on causal inference on
his website.

Gary King has done fundamental work on matching and has a website with lots of
resources. I have used some of his materials, especially the illustrations of matching, in
this lecture. One paper I learned a lot from is Ho et al. (2007).
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Starting Point: Conditional Independence

(Y 1, Y 0) ⊥⊥ D | X

For causal identification, we require the assumption that the treatment D is as good
as randomly assigned conditional on the covariates X

Formally, this means that the potential outcomes are conditionally independent of
the treatment assignment given the covariates

E
[
Y 1 | D = 1, X

]
= E

[
Y 1 | D = 0, X

]
E

[
Y 0 | D = 1, X

]
= E

[
Y 0 | D = 0, X

]
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Conditional Independence and Selection on Observables

If CIA holds, we speak of selection on observables

▶ Independence does not hold in general
▶ But it holds in the subpopulations defined by the covariates X

The groups defined by X (think age, gender, neighbourhood, etc) determine the
treatment assignment

▶ But within each group, who gets treated is as good as random

This is a strong assumption!
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Example: Smoking and Lung Cancer

Does smoking cause lung cancer?

▶ Today we would say “yes, of course”
▶ But answering this question was far from clear in the 1950s
▶ There is a strong correlation between smoking and lung cancer, but is it causal?

(Potential) problem: confounders

▶ There could be genetic determinants of smoking and lung cancer
▶ There could be environmental factors that cause both smoking and lung cancer

We don’t have experimental evidence
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Example: Death Rates per 1,000
The following example from Cochran (1968) will illustrate what selection on
observables and do for us

Smoking group Canada UK US

Non-smokers 20.2 11.3 13.5
Cigarettes 20.5 14.1 13.5

Cigars/pipes 35.5 20.7 17.4

In all countries, the highest death rates are for cigar and pipe smokers

▶ Does this mean that smoking pipes and cigars is more dangerous than smoking
cigarettes?

▶ And given the minor differences between cigarette smokers and non-smokers, are
cigarettes harmless?
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Smoking and Lung Cancer: Independence?

The independence assumption would imply that all three groups have the same
potential outcomes on average

E
[
Y 1 | Non-Smoker

]
= E

[
Y 1 | Cigarette

]
= E

[
Y 1 | Pipe

]
= E

[
Y 1 | Cigar

]
E

[
Y 0 | Non-Smoker

]
= E

[
Y 0 | Cigarette

]
= E

[
Y 0 | Pipe

]
= E

[
Y 0 | Cigar

]

Suppose that the independence assumption holds

▶ This would/should also mean that observable characteristics X are similar
between the groups

▶ I.e. the covariates should be balanced between groups
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Are cigarette smokers similar to pipe and cigar smokers?
Let’s ask Dall-E: show me a picture of a cigarette smoker and a cigar smoker
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Age as a Confounder?

Smoking group Canada UK US

Non-smokers 54.9 49.1 57.0
Cigarettes 50.5 49.8 53.2

Cigars/pipes 65.9 55.7 59.7

Clearly, age affects what people smoke and also their death rates

▶ Independence is violated: the distribution of age is different between the groups
▶ There may be other confounders, but let’s focus on age for now

We have covariate imbalance!

Potential remedy: condition on age (subclassification)
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Subclassification: Divide Age into Strata

Death rates # of Cigarette smokers # of Pipe or cigar smokers
Age 20–40 20 65 10
Age 41–70 40 25 25
Age ≥ 71 60 10 65
Total 100 100

12 / 46



Subclassification: Divide Age into Strata

Death rates # of Cigarette smokers # of Pipe or cigar smokers
Age 20–40 20 65 10
Age 41–70 40 25 25
Age ≥ 71 60 10 65
Total 100 100

The death rate of cigarette smokers in the population is:

20 × 65
100 + 40 × 25

100 + 60 × 10
100 = 29

But: the age distribution is (heavily) imbalanced between the groups
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Re-weighting: Age-Adjusted Death Rates
Let’s re-weight the death rates of cigarette smokers by the age distribution of
pipe/cigar smokers

Death rates # of Cigarette smokers # of Pipe or cigar smokers
Age 20–40 20 65 10
Age 41–70 40 25 25
Age ≥ 71 60 10 65
Total 100 100

The age-adjusted death rate of cigarette smokers is:

20 × 10
100 + 40 × 25

100 + 60 × 65
100 = 51

If cigarette smokers had the same age distribution as pipe/cigar smokers, their
death rate would be 51
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Age-Adjusted Death Rates
Cochran computes age-adjusted death rates (based on the population age
distribution)

Smoking group Canada UK US

Non-smokers 20.2 11.3 13.5
Cigarettes 29.5 14.8 21.2

Cigars/pipes 19.8 11.0 13.7

Here we achieved balance on one covariate: age

▶ The age-adjusted death rates are now more similar between the groups
▶ But there may be an imbalance on other covariates (SES, income, health, etc)

We need to use a DAG to identify all confounders and adjust for them

15 / 46



Identifying Assumptions

In presence of confounders X , we can identify a causal effect under two
assumptions

1. Conditional Independence: Y 0, Y 1 ⊥ D | X
2. Common Support: 0 < P(D = 1 | X ) < 1 with probability one

Common support: for each stratum, we need some units that are treated and others
that are control units

▶ We need common support to calculate the weights for the adjustment
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Summary: Subclassification and Re-weighting

Treated and control units often differ in the distribution of X (confounders)

We can make both groups (somewhat) comparable by

1. dividing the sample into strata based on X (subclassification)
2. re-weighting the strata to achieve balance on X (re-weighting)

After re-weighting, both groups have the same distribution of X by construction
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Causal Identification with Selection on Observables
Under conditional independence and common support, the following holds:

E
[
Y 1 − Y 0 | X

]
= E

[
Y 1 − Y 0 | X , D = 1

]
= E

[
Y 1 | X , D = 1

]
− E

[
Y 0 | X , D = 0

]
= E

[
Y | X , D = 1

]
− E

[
Y | X , D = 0

]

The estimator for the ATE is as follows:

δ̂ATE =
∫ (

E
[
Y | X , D = 1

]
− E

[
Y | X , D = 0

])
d Pr(X )
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The Limits of Subclassification: The Curse of Dimensionality

In the example of smoking and death rates, we adjusted for just one confounder

▶ The hope was that, by slicing up age into three groups, achieve balance in treated
and control groups

▶ We did achieve balance on age, but what about other confounders?
▶ Also, are three age groups enough or do we need more?

In practice, we have the problem of a finite sample size

▶ There are limits to how many strata we can create
▶ We cannot have an infinite number of groups defined by one variable (such as age)
▶ We cannot have an infinite number of variables to adjust for

This problem is known as the curse of dimensionality
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The Limits of Subclassification: The Curse of Dimensionality
Let’s say we have k = 1, . . . , K groups (for example defined by gender and age). We
can calculate the ATT as

δ̂ATT =
K∑

k=1

(
Y 1,k − Y 0,k)

×
(Nk

T
NT

)

where Y 1,k and Y 0,k are the average outcomes in group k for treated and control
units, and Nk

T is the number of treated units in group k.

In large groups (small K ) we will easily find a control unit for every treated unit

As K increases and groups get smaller, we will have more and more groups that
only contain control or treated units but not both
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Possible Solution: Matching

Source: Dall-E
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Possible Solution: Matching

Idea of matching:

▶ for each treated unit, find a control unit that is similar on all confounders
▶ compare the outcomes of treated and control units
▶ The comparison gives us an estimate of the ATT

Control units: statistical twins of treated units

It if also possible to have multiple control units for each treated unit
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Statistical Twins?

Source: somewhere on X, before 2023
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Why Don’t We just Run a Regression

If treated and untreated units have different X and X are confounders, we can include
them in a regression

Yi = α + βDi + βXi + ui

Don’t we then compare like with like?

▶ Answer: it depends on the functional form of the relationship between X and Y
▶ Regression can get it wrong if the relationship is non-linear and/or
▶ If there is not much common support in the distribution of X between treated

and control units
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Regression vs. Matching
Suppose we want to look at the effect of a treatment D on an outcome Y . Education
is a confounder.
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Regression vs. Matching
Enter the control units; for high and low levels of education, we have no common
support
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Regression vs. Matching
Separate regression lines for treated and control groups:

▶ the difference is β̂ > 0
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Regression vs. Matching
If we use a quadratic term for education, we get a different result

▶ The estimate β̂ is small and negative
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Regression vs. Matching

The previous slides highlight a problem with regression

▶ with a lack of common support, control and treated units are not comparable
▶ this can even be the problem if both groups have the same average level of

education

Control units with high and low levels of education influence the regression line

▶ but these units cannot be compared to any treated units
▶ so our regression compares fundamentally different units (apples and oranges)

We have a covariate imbalance; regression does not (always) solve the problem
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Regression vs. Matching
Matching selects units with common support in the distribution of X
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Regression vs. Matching
Among these units, there is no difference between treatment and outcome
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Matching Stage 1: Preparation

1: Choose the variables you want to match on

▶ Match on confounders, but not on colliders or mediators

2: Choose a matching method (more on this later)

▶ The method determines how you select control observations

3: Match treated and control observations

▶ Select control observations that are similar in X to treated ones
▶ prune observations without good matches
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Matching: Stage 2: Refinement and Estimation

4: Check if your dataset is balanced on covariates

▶ Treated and control observations should have similar values of X
▶ If you don’t have balance, go back to stage 1

5: Run a simple regression of the outcome on the treatment

▶ Or do a simple difference in outcomes and run a t-test

6: Run sensitivity checks to see if the results depend on the matching procedure

▶ Change matching methods
▶ Change parameters of the matching method
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Matching and the ATT: One Control Unit per Treated Unit

With one control unit for each treated unit, we can calculate the ATT as

δ̂ATT = 1
NT

∑
Di =1

(Yi − Yj(i))

▶ Yi is the outcome for treated unit i
▶ Yj(i) is the outcome for the control unit j(i)
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Matching and the ATT: Multiple Control Units per Treated Unit

Or if we find M matches for each treated unit, we can calculate the ATT as

δ̂ATT = 1
NT

∑
Di =1

(
Yi −

[ 1
M

M∑
m=1

Yjm(1)

])

▶ Yjm(1) is the outcome for the mth control unit matched to treated unit i
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Matching and the ATE

We can also use matching to estimate the ATE. For this, we need to

▶ Find a similar control unit for each treated unit
▶ Find a similar treated unit for each control unit

The estimator for the ATE is as follows:

δ̂ATE = 1
N

N∑
i=1

(2Di − 1)
[
Yi −

( 1
M

M∑
m=1

Yjm(i)

)]
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Exact Matching

Match each treated unit to a control unit that has exactly the same covariate
values

This is called exact matching and can be thought of as the gold standard for
matching
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Exact Matching with One Covariate
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For each treated unit, we find a control unit with the same covariate value
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Exact Matching with Two Covariates
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For each treated unit, we find a control unit with the same values of covariates 1
and 2
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Example: Job Training Programme
Trainees Non-Trainees

Unit Age Earnings Unit Age Earnings
1 18 9500 1 20 8500
2 29 12250 2 27 10075
3 24 11000 3 21 8725
4 27 11750 4 39 12775
5 33 13250 5 38 12550
6 22 10500 6 29 10525
7 19 9750 7 39 12775
8 20 10000 8 33 11425
9 21 10250 9 24 9400
10 30 12500 10 30 10750

11 33 11425
12 36 12100
13 22 8950
14 18 8050
15 43 13675
16 39 12775
17 19 8275
18 30 9000
19 51 15475
20 48 14800

Mean 24.3 $11,075 Mean 31.95 $11,101.25
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Age Distribution of Trainees vs. Non-Trainees
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Clearly, the age distribution of trainees and non-trainees is different (mean 24.3
vs. 31.95)
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Creating an (exactly) Matched Sample
Trainees Non-Trainees Matched Sample

Unit Age Earnings Unit Age Earnings Unit Age Earnings
1 18 9500 1 20 8500 14 18 8050
2 29 12250 2 27 10075 6 29 10525
3 24 11000 3 21 8725 9 24 9400
4 27 11750 4 39 12775 8 27 10075
5 33 13250 5 38 12550 11 33 11425
6 22 10500 6 29 10525 13 22 8950
7 19 9750 7 39 12775 17 19 8275
8 20 10000 8 33 11425 1 20 8500
9 21 10250 9 24 9400 3 21 8725
10 30 12500 10 30 10750 10,18 30 9875

11 33 11425
12 36 12100
13 22 8950
14 18 8050
15 43 13675
16 39 12775
17 19 8275
18 30 9000
19 51 15475
20 48 14800

Mean 24.3 $11,075 Mean 31.95 $11,101.25 Mean 24.3 $9,380
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Treated Sample vs. Matched Control Sample
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With exact matching, the age distribution of treated and matched control units
are the same
If age is the only confounder, we can estimate the ATT as

ATT = 1
N

N∑
i=1

(Yi − Yi ′) = 11, 075 − 9, 380 = 1, 695

So the estimated causal effect of the training programme is 1,695 dollars
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Prof. Benjamin Elsner
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School of Economics
Newman Building, Office G206
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Office hours: book on Calendly
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